Topological Dynamics and Decidability of Infinite Constraint Satisfaction
نویسندگان
چکیده
منابع مشابه
Constraint satisfaction with infinite domains
Constraint satisfaction problems occur in many areas of computer science, most prominently in artificial intelligence including temporal or spacial reasoning, belief maintenance, machine vision, and scheduling (for an overview see [Kumar, 1992,Dechter, 2003]). Other areas are graph theory, boolean satisfiability, type systems for programming languages, database theory, automatic theorem proving...
متن کاملInfinite Domain Constraint Satisfaction Problem
The computational and descriptive complexity of finite domain fixed template constraint satisfaction problem (CSP) is a well developed topic that combines several areas in mathematics and computer science. Allowing the domain to be infinite provides a way larger playground which covers many more computational problems and requires further mathematical tools. I will talk about some of the resear...
متن کاملDatalog and Constraint Satisfaction with Infinite Templates
On finite structures, there is a well-known connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates. If the template Γ is ω-categorical, we present various equivalent characterizations for whet...
متن کاملCollapsibility in Infinite-Domain Quantified Constraint Satisfaction
In this article, we study the quantified constraint satisfaction problem (QCSP) over infinite domains. We develop a technique called collapsibility that allows one to give strong complexity upper bounds on the QCSP. This technique makes use of both logical and universalalgebraic ideas. We give applications illustrating the use of our technique.
متن کاملComplexity Classification in Infinite-Domain Constraint Satisfaction
appeared in the proceedings of ICDT’10. [44] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. In Proceedings of CSL, pages 44–57, Vienna, 2003. [45] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation, 16(3):359–373, 2006. [46] M. Bodirsky and D. Piguet. Finite trees are Ramsey with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2015
ISSN: 2075-2180
DOI: 10.4204/eptcs.191.1